Second Order Bilinear Discriminant Analysis for single trial EEG analysis

نویسندگان

  • Christoforos Christoforou
  • Paul Sajda
  • Lucas C. Parra
چکیده

Traditional analysis methods for single-trial classification of electroencephalography (EEG) focus on two types of paradigms: phase locked methods, in which the amplitude of the signal is used as the feature for classification, e.g. event related potentials; and second order methods, in which the feature of interest is the power of the signal, e.g. event related (de)synchronization. The procedure for deciding which paradigm to use is ad hoc and is typically driven by knowledge of the underlying neurophysiology. Here we propose a principled method, based on a bilinear model, in which the algorithm simultaneously learns the best first and second order spatial and temporal features for classification of EEG. The method is demonstrated on simulated data as well as on EEG taken from a benchmark data used to test classification algorithms for brain computer interfaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-Order Bilinear Discriminant Analysis

Traditional analysis methods for single-trial classification of electro-encephalography (EEG) focus on two types of paradigms: phase-locked methods, in which the amplitude of the signal is used as the feature for classification, that is, event related potentials; and second-order methods, in which the feature of interest is the power of the signal, that is, event related (de)synchronization. Th...

متن کامل

The Analytic Bilinear Discrimination of Single-Trial EEG Signals in Rapid Image Triage

The linear discriminant analysis (LDA) method is a classical and commonly utilized technique for dimensionality reduction and classification in brain-computer interface (BCI) systems. Being a first-order discriminator, LDA is usually preceded by the feature extraction of electroencephalogram (EEG) signals, as multi-density EEG data are of second order. In this study, an analytic bilinear classi...

متن کامل

Optimized Seizure Detection Algorithm: A Fast Approach for Onset of Epileptic in EEG Signals Using GT Discriminant Analysis and K-NN Classifier

Background: Epilepsy is a severe disorder of the central nervous system that predisposes the person to recurrent seizures. Fifty million people worldwide suffer from epilepsy; after Alzheimer’s and stroke, it is the third widespread nervous disorder.Objective: In this paper, an algorithm to detect the onset of epileptic seizures based on the analysis of brain electrical signals (EEG) has b...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

A review on EEG based brain computer interface systems feature extraction methods

The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007